Может ли темная материя вовсе не существовать?

Говорят, что темной материи больше всего во Вселенной (если говорить о материи вообще). И все же в повседневной жизни мы с ней практически не сталкиваемся. Мы знаем Солнце — самый массивный объект в Солнечной системе — оно состоит из обычной материи (протонов, нейтронов и электронов), но есть еще масса других источников, включая планеты, газ, пыль, плазму и останки звезд. Темной материи среди них нет — и даже Стандартная модель не описывает ее частиц. Конечно, темная материя — не единственный вариант объяснить наблюдаемые гравитационные явления во Вселенной. Другой вариант — модифицировать теорию гравитации, что пытались сделать уже очень многие. На этой почве выросла идея Модифицированной Ньютоновской Динамики (MOND) и другие теории, которые пока являются популярными альтернативами темной материи.

Чтобы с чего-то начать, нам нужно вернуться в 1800-е годы и поговорить о проблеме, которая существовала задолго до «пропавшей массы» (или «пропавшего света»), которую пытаются решить темная материя и MOND: проблеме Урана и Меркурия. Закон всемирного тяготения, выдвинутый Ньютоном еще в 1600-е годы, был невероятно успешным в описании всего — насколько нам известно — к чему применялся. От движения снарядов до катящихся объектов; от веса объектов до тиканья маятниковых часов; от плавучести лодки до орбиты Луны вокруг Земли, сила тяжести Ньютона никогда не подводила.

Три закона Кеплера, особый случай гравитационной формулы Ньютона, применялся ко всем известным планетам в одинаковой степени:

Планеты двигаются по эллипсам с Солнцем в одном из фокусов. Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет.


Известные внутренние и внешние миры все подчинялись этим законам, так что никаких отклонений не выявляли сотни лет. Но с открытием Урана в 1781 году что-то изменилось. В то время как последняя из открытых планет двигалась по эллипсу вокруг Солнца, она двигалась с неправильной скоростью, если сравнивать с предсказанной законами тяготения.

В первые 20 лет с момента открытия она двигалась быстрее, каждую ночь и каждый год, чем предписывали законы. В течение следующих 20-25 лет планета двигалась в точном соответствии законам. Но потом замедлялась, и скорость падала ниже прогнозируемой.

Была ли ошибка в законе тяготения? Возможно. Но также возможно, что было немного больше материи — чего-то невидимого, темной материи — которая оказывала влияние на Уран, вызывая нарушения в его орбите. Это уже больше похоже на правду. После теоретический войны между Урбеном Леверье и Джоном Коучем Адамсом, которые работали независимо и делали прогнозы относительно местоположения новой планеты, прогнозы Леверье подтвердил Иоганн Галле и его помощник Генрих д’Арре 23 сентября 1846 года. Была обнаружена планета Нептун, первый объект, существование которого было выведено по эффектам, оказываемым его массой: гравитационным влиянием.

С другой стороны, внутренняя планета Меркурий — благодаря увеличению точности наблюдений и в сочетании с вековыми данными — начала демонстрировать еще более странное нарушение законов гравитации. Если законы Кеплера предсказывали, что планеты должны двигаться по идеальным эллипсам с Солнцем в одном из фокусов, то при условии, что нет других масс, нарушающих или оказывающих влияние на систему. Но масс вокруг нет, а Меркурий не движется по идеальному эллипсу. Его эллипс прецессирует с течением времени.

Используя законы тяготения Ньютона, мы могли бы учесть влияние всех известных планет (в том числе и Нептуна). Проделав все это, мы обнаружили бы, что остается небольшое расхождение между предсказанным и наблюдаемым: прецессия в 43» на столетие, или 0,012 градуса на столетие. Но это не было случайностью.

Каким же будет объяснение на этот раз? Связана ли эта новая невидимая масса с недрами Меркурия? Или же реальная проблема закралась в закон гравитации? Основательные поиски ответа на этот вопрос привели к новой теоретической планете Вулкан, которая должна была быть ближе к Солнцу, чем все остальные. Но никакого Вулкана не нашли. Решение пришло в 1915 году, когда Эйнштейн изложил свою общую теорию относительности.

Теперь промотаем время до 1970-х годов — до ряда научных наблюдений Веры Рубин. Мы наблюдаем отдельные галактики — в частности, галактики «с ребра» — и измеряем их профили скорости. Мы смотрим на одну сторону галактики и видим, что она движется по направлению к нам (по синему смещению), смотрим на другую — она удаляется от нас (по красному смещению), и так определяем вращение галактики. Чего мы от них ждем? Подобно нашей Солнечной системе, внутренние звезды должны вращаться быстрее, и чем дальше от центра, тем ниже должна быть скорость. Но это не то, что мы находим.

Источник

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *